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Abstract 

 Lane changing assistance systems advise drivers on safe gaps for making mandatory lane 

changes at lane drops. In this study, such a system was developed using a Bayes classifier and a 

decision tree to model lane changes. Detailed vehicle trajectory data from the Next Generation 

Simulation (NGSIM) dataset were used for model development (US Highway 101) and testing 

(Interstate 80). The model predicted driver decisions regarding whether or not to merge as a 

function of certain input variables. The best results were obtained when both the Bayes and 

decision tree classifiers were combined into a single classifier using a majority voting principle. 

Predictive accuracy was 94.3% for non-merge events and 79.3% for merge events. In a lane 

change assistance system, the accuracy of non-merge events is more critical than accuracy for 

merge events. Misclassifying a non-merge event as a merge event could result in a crash, while 

misclassifying a merge event as a non-merge event would only result in a lost opportunity to 

merge. Sensitivity analysis performed by assigning a higher misclassification cost for non-merge 

events resulted in even higher accuracy for non-merge events, but lower accuracy for merge 

events.
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Chapter 1 Introduction 

With an increase in the deployment of sensor technology in automobiles, driver 

assistance systems such as adaptive cruise control, collision avoidance, and lane departure 

warning systems have become a reality in recent years. In terms of lane changing assistance, the 

current technology focuses primarily on blind spot identification and warning. Limited research 

exists on other forms of lane changing assistance systems. This report describes a lane changing 

assistance system that advises drivers of safe and unsafe gaps for making mandatory lane 

changes.  

Lane changing models describe driver lane changing behaviors under various traffic 

conditions. These models are an essential component of microscopic traffic simulation, and have 

been extensively studied in the literature. Much of the literature on lane change models is based 

on gap acceptance. A driver makes a lane change when both the lead and the lag gaps in the 

target lane are acceptable. In the 1960s and 1970s, various gap acceptance models were 

developed based on assumed distributions of critical lead and lag gap lengths. Herman and Weiss 

(1) assumed an exponential distribution for critical gaps; Drew et al. (2) assumed a lognormal 

distribution; and Miller (3) assumed a normal distribution. Daganzo (4) modeled driver merging 

from the minor leg of a stop controlled T-intersection to the major leg using a probit model. 

Gipps (5) designed a hierarchical lane changing structure that was implemented in a microscopic 

traffic simulator. Kita (6) modeled driver merging behavior from a freeway on-ramp using a logit 

model for gap acceptance. Yang and Koutsopoulos (7) established a rule-based lane changing 

model that was incorporated into the microscopic simulator MITSIM. Ahmed et al. (8) 

developed a generic lane changing model that captured lane changing behavior under both 

mandatory and discretionary lane changes. Kita (9) also developed a two-person, non-zero, non-
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cooperative game to model the interactions between drivers in the target lane and the merging 

lane. Hidas (10) used intelligent-agent-based techniques to model driver lane changing behavior, 

implementing the model in the ARTEMiS traffic simulator. Toledo et al. (11) proposed an 

integrated driving behavior model that captured both lane changing and acceleration behaviors. 

Recently, Meng and Weng (12) used statistical methods, such as the classification and regression 

tree (CART), to predict merging behavior near work zone tapers. In a recent study, Hou et al. (13) 

developed a genetic fuzzy model to predict the merging behavior of drivers at lane drops. 

 In summary, several types of lane changing models have been proposed in the literature, 

with the main goal of developing accurate traffic simulation models. However, none of these 

models were intended for use in a real-time lane changing assistance system that advises drivers 

on when it is safe or unsafe to merge. One main difference between simulation and lane change 

assistance system applications is the difference between merge and non-merge decisions in terms 

of the relative importance of misclassification. In a simulation model, the effect of a non-merge 

event misclassified as a merge event affects only mobility; however, the same misclassification 

in a lane change assistance system could impact traffic safety significantly. In other words, 

misclassifying a merge event as a non-merge event would result in a lost opportunity to merge, 

but would not have a negative impact on safety. Thus, any model of lane change targeted for use 

in vehicles as part of an assistance system must assign greater importance to not misclassifying 

non-merge events as merge events. Many of the models proposed in the literature are not focused 

on this new application.  

In the current report, Bayes classifier and decision tree methods were applied to develop 

models for mandatory lane changes at lane drops. Both methods have been applied extensively in 

machine learning systems built for decision making in many disciplines. They have several 
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advantages for modeling lane changing. Both relax the assumptions of the mathematical forms 

and variable distributions of traditional lane-changing models. Therefore, they can mimic the 

complex nonlinear nature of driver lane changing behavior more realistically. One additional 

advantage of the Bayes classifier is its ability to take into account the cost of misclassification. In 

a Bayes classifier, it is possible to assign a higher cost of misclassification to non-merge events.   

Bayes classifier and decision tree models were developed using identical training and 

validation data. Then, both classifiers were combined into a single hybrid classifier. When tested 

on a new dataset from a different highway segment, the combined classifier outperformed the 

individual classifiers in terms of the accuracy of non-merge events. In this report, mandatory lane 

changes at lane drops refer only to those executed by traffic entering from a ramp. The lane 

changes made by vehicles exiting the mainline, although also mandatory, were outside the scope 

of this study. Discretionary lane changes, performed when drivers perceive driving conditions in 

the target lanes to be better, were also beyond the scope of this study. 

 

 

 

 

 

 

 

 



4 

Chapter 2 Data 

2.1. Data Reduction 

 In this study, traffic data provided by the Federal Highway Administration’s (FHWA) 

Next Generation Simulation (NGSIM) project (14) were used to build the lane changing models. 

NGSIM is an open source dataset that has been used in previous research on simulation model 

development and testing (15, 16). The NGSIM data included vehicle trajectories on a segment of 

southbound US Highway 101 (Hollywood Freeway) in Los Angeles, California and a segment of 

Interstate 80 in San Francisco, California. US Highway 101 data were collected for 45 minutes, 

from 7:50 a.m. to 8:35 a.m., on June 15, 2005. Interstate 80 data were also collected for 45 

minutes, from 4:00 p.m. to 4:15 p.m. and from 5:00 p.m. to 5:30 p.m. on April 13, 2005. Both 

datasets represented two traffic states—conditions when congestion was building up (the period 

of the first 15 minutes), denoted as the transition period, and congested conditions (the period of 

the remaining 30 minutes). Table 2.1 shows the aggregate speed and volume statistics of the 

NGSIM dataset for every 15 minutes. During the congested period, flows and speeds both 

decreased. As depicted in figure 2.1, the study segment of US Highway 101 was located between 

an on-ramp and off-ramp, and was 2,100 feet long, with five freeway lanes and an auxiliary lane. 

The study segment of Interstate 80 was 1,650 feet in length, and also had five freeway lanes and 

an auxiliary lane, and one on-ramp. 

Previous research (18, 19, 20, 21) has shown that NGSIM speed measurements exhibit 

noises (random errors). Data smoothing techniques such as moving average (21), Kalman 

filtering (22), and Kalman smoothing (23) have been used to improve speed data quality. In this 

report, the moving average method was adopted to smooth the speed measurements.  
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The longitudinal and lateral coordinates, speed, acceleration, and headway for each 

vehicle were obtained from trajectory data at a resolution of 10 frames per second. Given the 

focus of this study on mandatory lane changes, only trajectory data for vehicles in the auxiliary 

lane and the adjacent lane were used for model development. Hereafter, the auxiliary lane is 

referred to as the merge lane, and the adjacent lane as the target lane. The speed and position of 

each vehicle were identified in one-second intervals. The one-second intervals produced data 

with comparable sample sizes for both lane changing and non-lane changing events. Other 

researchers (12) have also used one-second intervals to analyze driver lane changing behavior. 

Since it is impossible to determine the intent of a driver using vehicle trajectory data alone, the 

observed behavior of drivers was modeled. During every one-second interval, a driver’s behavior 

was identified as either merge or no-merge. Merge events occurred when a vehicle’s lateral 

coordinate began to shift toward the adjacent target lane direction without oscillations. Otherwise, 

these were deemed non-merge events. A single driver could participate in several non-merge 

events, but only one merge event.  

A total of 686 observations were obtained from US Highway 101, 373 being non-merge 

and 313 being merge events. As discussed in Hastie et al. (24), there is no general rule on how 

many observations should be assigned to training and validation. In order to obtain a high degree 

of accuracy, a large training dataset is required. Other studies have used 80% of the dataset for 

training and 20% for model validation (25, 26). Based on these studies, the current dataset was 

divided into two groups—80% of observations were used for training, and 20% were used for 

validation. The model was tested using the Interstate 80 dataset consisting of 667 observations, 

459 being non-merge and 208 being merge events. 
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Table 2.1 Summary statistics 

 

A．Summary statistics of US Highway 101 dataset 

Traffic 

condition 

Time 

period 

Flow 

(vph) 

Time mean 

speed 

m/s km/h 

Transition 
7:50 a.m. 

– 8:05a.m. 
8612 12.55 45.16 

Congested 

8:05 a.m. 

– 8:20a.m. 
8016 11.10 39.96 

8:20 a.m. 

– 8:35a.m. 
7604 9.74 35.05 

 

 

B. Summary statistics of Interstate 80 dataset 

Traffic 

condition 

Time 

period 

Flow 

(vph) 

Time mean 

speed 

m/s km/h 

Transition 
4:00 p.m. 

– 4:15p.m. 
8144 9.92 35.71 

Congested 

5:00 p.m. 

– 5:15p.m. 
7288 8.34 30.13 

5:15 a.m. 

– 5:30a.m. 
7048 7.78 28.00 
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(a) 

 

Figure 2.1 US Highway 101 (a) and Interstate 80 (b) study corridor from NGSIM (14) 
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(b) 

Figure 2.1 US Highway 101 (a) and Interstate 80 (b) study corridor from NGSIM (14) (cont’d) 
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2.2. Input Variables 

At any given instant, a driver traveling in the merge lane assesses traffic conditions in both 

the target lane and the merge lane in order to decide whether to merge. Several factors may affect 

a driver’s lane changing decision. In this study, five factors, or, dimensions that were found to 

affect driver merging decisions in previous studies (8, 10) were considered as input variables for 

the models. These factors are shown in figure 2.2, and are defined below.  

 

 

Figure 2.2 Schematic illustrating input variables 

 

 𝛥𝑉𝑙𝑒𝑎𝑑(m s⁄ ): The speed difference between the lead vehicle in the target lane and the 

merging vehicle, in feet per second. 𝛥𝑉𝑙𝑒𝑎𝑑 can be expressed as 

          

𝛥𝑉𝑙𝑒𝑎𝑑 = 𝑉𝑙𝑒𝑎𝑑 − 𝑉𝑚𝑒𝑟𝑔𝑒, 

where, 

  𝑉𝑙𝑒𝑎𝑑 is the speed of the lead vehicle and 𝑉𝑚𝑒𝑟𝑔𝑒 is the speed of merge vehicle. 

 

 

 𝛥𝑉𝑙𝑎𝑔(m s⁄ ): The speed difference between the lag vehicle in the target lane and the 

merging vehicle, in feet per second, ΔVLag,  can be expressed as: 

            

𝛥𝑉𝑙𝑎𝑔 = 𝑉𝑙𝑎𝑔 − 𝑉𝑚𝑒𝑟𝑔𝑒, 

where, 

  VLag is the speed of the lag vehicle. 
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 𝐷𝑙𝑒𝑎𝑑(m): The gap distance between the lead vehicle in the target lane and the merging 

vehicle, in feet.  

 

 DLag(ft): The gap distance between the lag vehicle in the target lane and the merging 

vehicle, in feet.  

 

 𝑆(m): The distance from the merging vehicle to the beginning of the merge lane. 
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Chapter 3 Methodology 

3.1. Bayes Classifier 

3.1.1 Bayes Decision Theory  

 Let 𝑦1, 𝑦2 denote the merge and non-merge classes. According to the Bayesian 

classification rule (27),              

                                                𝑃(𝑦𝑖|𝒙) =
𝑝(𝒙|𝑦𝑖)𝑃(𝑦𝑖)

𝑝(𝒙)
,  𝑖 = 1,2                                                  (3.1)   

where, 

  𝒙 is the input vector, 𝑃(. )is the probability, and 𝑝(. ) is the probability density function.  

 

The Bayes classification rule (24) is stated as follows: 

 If 𝑃(𝑦1|𝒙) > 𝑃(𝑦2|𝒙), 𝒙 is classified to 𝑦1. 

 If 𝑃(𝑦1|𝒙) < 𝑃(𝑦2|𝒙), 𝒙 is classified to 𝑦2. 

 If 𝑃(𝑦1|𝒙) = 𝑃(𝑦2|𝒙), 𝒙 can be assigned to either 𝑦1 or 𝑦2. 

 

Using equation 3.1, the classification decision is equivalently based on the inequalities, 

 

                                               𝑝(𝒙|𝑦1)𝑃(𝑦1) > (<)𝑝(𝒙|𝑦2)𝑃(𝑦2)                                             (3.2) 

 

3.1.2 Risk of Misclassification 

Risk considers both the likelihood of misclassification and the cost of the 

misclassification. A penalty term 𝜆𝑘𝑖 denotes the cost of misclassifying 𝒙 to a wrong class 𝑦𝑖 

while belonging to class 𝑦𝑘 (27). In order to minimize the average risk, the classification 

decision inequalities (3.2) become, 
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                                 (𝜆12−𝜆11)𝑝(𝒙|𝑦1)𝑃(𝑦1) > (<)(𝜆21−𝜆22)𝑝(𝒙|𝑦2)𝑃(𝑦2)                    (3.3) 

                                                  

Adopting the assumption that 𝜆𝑖𝑗 > 𝜆𝑖𝑖 and 𝜆𝑖𝑖 = 0, the Bayes classification rule becomes, 

 

                                    𝒙 belongs to 𝑦1(𝑦2) if 𝑙12 =
𝑝(𝒙|𝑦1)

𝑝(𝒙|𝑦2)
> (<)

𝑃(𝑦2)𝜆21

𝑃(𝑦1)𝜆12
                                  (3.4)                                                        

where, 

 

  𝑙12 is likelihood ratio. 
 

 

3.1.3 k Nearest Neighbor Density Estimation 

A driver’s merging behavior can be predicted using the class-conditional probability 

density function, 𝑝(𝒙|𝑦𝑖). In this study, the k nearest neighbor (kNN) density estimation method 

(28) was used to estimate the class-conditional probability density functions. The kNN 

estimation method was chosen because, similar to kernel estimation, it is a non-parametric 

method; thus, there is no need to assume a distributional form, unlike maximum likelihood. 

Using this method, the class-conditional probability density functions is estimated as, 

 

                                                         𝑝(𝒙|𝑦𝑖) =
𝑘

𝑁𝑖𝑉𝑖
, 𝑖 = 1,2                                                       (3.5) 

where, 

 𝑁𝑖 is the total number of training samples in class 𝑦𝑖, and 𝑉𝑖 is the volume of the five-

 dimensional hypersphere (i.e., input data space) centered at 𝒙 that contains 𝑘 points from 

 class 𝑦𝑖. 
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𝑃(𝑦𝑖) is easily estimated from observations as follows:  

 

                                                               𝑃(𝑦𝑖) =
𝑁𝑖

𝑁
, 𝑖 = 1,2                                                       (3.6)                                                   

where, 

 𝑁𝑖 is the total number of training samples in class 𝑦𝑖, and 𝑁 is the total number of 

 training samples. 

 

By substituting equations 3.5 and 3.6 into equation 3.4, the Bayes classification rule is 

equivalent to, 

 

                                             𝒙 belongs to 𝑦1 (𝑦2) if 𝑙12 =
𝑉2

𝑉1
> (<)

𝜆21

𝜆12
                                 (3.7) 

 

 Let 𝑟𝑖 denote the radius of the hypersphere centered at 𝒙 that contains 𝑘 points from class 

𝑦𝑖. Since the hypersphere dimension in this study is five (the total number of input variables), the 

likelihood ratio can be computed as, 

                                                        𝑙12 =
𝑉2

𝑉1
= (

𝑟2

𝑟1
)

5

 (29)                                                       (3.8) 

 

  

3.1.4 Distance Measurement 

The hypersphere radius 𝑟𝑖 can be easily obtained by searching for the 𝑘th nearest distance 

from all the training vectors of class 𝑦𝑖. The weighted distance measure was used to calculate the 

hypersphere radius. Let 𝒙𝒋 and 𝒙𝒌 denote two vectors of 𝑙 features. The weighted distance is: 
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                                              𝐷(𝒙𝒋, 𝒙𝒌) =  √∑ 𝑤𝑖(𝑥𝑗𝑖 − 𝑥𝑘𝑖)2𝑙
𝑖=1                                            (3.9)                                                       

where, 

  𝑤𝑖 is the weights associated with features.  

 

 The maximum margin decision boundary established by support vector machines (SVM) 

is used to determine the weights (30). Let 𝒒 be the query point whose class label is to be 

predicted. The SVM classifier gives the decision hyperplane 𝑔(𝒙). Let 𝒑 be the point with the 

closest Euclidean distance to 𝒒 on decision hyperplane 𝑔(𝒙). 𝑅(𝒒)𝑗  is defined as, 

  

                                                            𝑅(𝒒)𝑗 = |𝒆𝑗
𝑇∇𝑔(𝒑)|                                                       (3.10)                                                     

where, 

 𝒆𝑗 denotes the canonical unit vector along input feature 𝑗. The weights are given by, 

 

                                                            𝑤(𝒒)𝑗 =
(𝑅(𝒒)𝑗)𝑡

∑ (𝑅(𝒒)𝑖)𝑡𝑙
𝑖=1

                                                       (3.11) 

where, 

 𝑡 is a positive integer.  

  

 In this study, t values ranging from 1 to 4 were applied, and 𝑡 = 2 produced the best 

model performance. In this case, the SVMs decision hyperplane was in linear form 𝑔(𝒙) =

𝒃𝑇𝒙 + 𝑏0 = 0, Thus, 𝑅(𝒒)𝑗 ≡ 𝑏𝑗. 
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3.2 Decision Tree Model  

A decision tree achieves a classification decision by performing a sequence of tests on 

feature vectors along a path of nodes (31). Each internal node in the tree provides a question, “Is 

feature 𝑥𝑖 ≥ 𝑎?”, where 𝑎 is a threshold value. The binary answer to the question corresponds to 

a descendant node. At the end, each terminal node returns a class label. The size of a decision 

tree is the key factor in developing the decision tree model. If the size of a tree is too small, the 

tree results in high misclassification rates. On the other hand, if a tree grows too large, it could 

overfit the training data and perform poorly on testing data. Therefore, the suggested approach is 

to grow a tree with a large enough size, then prune the branches according to a set of pruning 

rules. 

3.2.1 Node Splitting 

In order to construct a decision tree, the set of questions at tree nodes are to be 

determined. Each node 𝑡 is associated with a subset of training set 𝑿𝑡. The root node is assigned 

with the entire training set. The goal of the binary split at each node is to produce subsets that are 

more homogeneous or purer than the parent subset. In this model, Shannon’s information theory 

(32) was adopted to measure the impurity of subset 𝑿𝑡, also known as node impurity.  

Let 𝑦1, 𝑦2denote the two classes: merge and non-merge. Let 𝑃(𝑦𝑖|𝑡)denote the 

probability that a sample in subset 𝑿𝑡 belongs to class 𝑦𝑖, 𝑖 = 1,2. Node impurity is then defined 

as, 

                                                   𝐼(𝑡) = − ∑ 𝑃(𝑦𝑖|𝑡) log2 𝑃(𝑦𝑖|𝑡)2
𝑖=1                                        (3.12)                                            

 

𝑃(𝑦𝑖|𝑡) can be easily estimated by 𝑁𝑡
𝑖 𝑁𝑡⁄ , where 𝑁𝑡

𝑖 is the number of vectors in subset 𝑿𝑡 that 

belong to class 𝑦𝑖, and 𝑁𝑡 is the total number of vectors in subset 𝑿𝑡. After performing a binary 
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split at node 𝑡, a subset 𝑿𝑡𝑌 with an answer “Yes” is assigned to node 𝑡𝑌, and a subset 𝑿𝑡𝑁 with 

answer “No” is assigned to node 𝑡𝑁. The decrease in node impurity 𝛥𝐼(𝑡) is given by, 

 

                                               𝛥𝐼(𝑡) = 𝐼(𝑡) −
𝑁𝑡𝑌

𝑁𝑡
 𝐼(𝑡𝑌) −

𝑁𝑡𝑁

𝑁𝑡
 𝐼(𝑡𝑁)                                   (3.13) 

where, 

 𝑁𝑡𝑌 and 𝑁𝑡𝑁 are the numbers of vectors in subsets 𝑿𝑡𝑌 and 𝑿𝑡𝑁.  

 

By exhaustively searching for all candidate questions, the one that leads to the maximum 

impurity decrease is selected. 

3.2.2 Stop-Splitting Criteria and Class Assignment 

A threshold probability value 𝑃0 is necessary to stop the node splitting process at any 

node. Splitting stops when more than 𝑃0 × 100% of vectors in the subset belong to any one 

single class, i.e., max
i

𝑃(𝑦𝑖|𝑡) > 𝑃0. In this model, 0.9 is selected as the threshold value, as this 

value will also ensure the tree grows large enough for pruning. Once a terminal node is 

determined, the class label is given by 𝑦𝑗 where, 

 

                                                             𝑗 = 𝑎𝑟𝑔 max
𝑖

𝑃(𝑦𝑖|𝑡)                                                  (3.14) 

                                      

 

3.2.3 Tree Pruning 

Minimal cost-complexity pruning (33) was employed as the pruning rule in this report. 

Due to its computational efficiency, minimal cost-complexity pruning is one of the most 

common methods of pruning a decision tree. The sequence of subtrees generated by this pruning 
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process is nested, meaning that the nodes that were previously cut off will not reappear in 

subsequent subtrees. The cost-complexity measure 𝑅𝛼(𝑇) of decision tree 𝑇 is defined as, 

 

                                                         𝑅𝛼(𝑇) =  𝑅(𝑇) + 𝛼|�̃�|                                                     (3.15) 

where, 

  𝑅(𝑇) is the substitution estimate for the overall misclassification rate of tree 𝑇, 𝛼 ≥ 0 is 

 the complexity parameter, and |�̃�| is the total number of terminal nodes in tree 𝑇.  

 

 Each value of 𝛼 is associated with a subtree 𝑇(𝛼) that minimizes 𝑅𝛼(𝑇). As 𝛼 increases 

from 0 to a sufficiently large number, the size of 𝑇(𝛼) decreases from its largest size to the 

smallest size (only for the root node). If a subtree minimizes 𝑅𝛼(𝑇) for a given value of 𝛼, it will 

remain minimizing 𝑅𝛼(𝑇) until 𝛼 increases to a jump point. Let {𝛼𝑘} be the increasing sequence 

of the jump points. For any 𝛼𝑘 ≤ 𝛼 ≤ 𝛼𝑘+1, 𝑇(𝛼) = 𝑇(𝛼𝑘) = 𝑇𝑘. Finally, a sequence of 

minimal cost-complexity trees {𝑇𝑘} are generated. The correct size tree 𝑇∗can be selected by test 

sample estimates,  

 

                                                           𝑅𝑡𝑠(𝑇∗) =  min
𝑘

𝑅𝑡𝑠(𝑇𝑘)                                                 (3.16) 

where, 

  𝑅𝑡𝑠(. ) denotes misclassification rate for test sample. 
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3.3. Combining Classifiers  

The majority voting rule (27) was used as the combination rule to combine both the 

Bayes classifier and decision tree methods, owing to its robust performance. Let 𝐿 denote the 

number of classifiers; the majority voting rule is stated as follows: 

 If 𝐿 is odd, the unknown pattern is classified to a class when at least 
𝐿+1

2
 of classifiers agree 

on the class label. 

 If 𝐿 is even, the unknown pattern is classified to a class when at least 
𝐿

2
+ 1 of classifiers 

agree on the class label. 

 In this report, a vehicle will merge (class) only if both the Bayes classifier and decision 

tree agree on the decision to merge (same class label). Thus, the combined classifier is more 

conservative than either of the individual classifiers from which it was constructed. This is a 

valuable attribute for safety applications such as the lane change assistance system, where non-

merge decisions are more critical and erring on the conservative side is safer. 
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Chapter 4 Results  

4.1. Bayes Classifier 

In developing the Bayes classifier, weights were first estimated using SVMs. The 

estimated weights shown in table 4.1 reveal that 𝛥𝑉𝑙𝑒𝑎𝑑 had the largest weight, indicating 𝛥𝑉𝑙𝑒𝑎𝑑 

was the most relevant feature in classifying merge and non-merge events. Thus, a slight change 

in 𝛥𝑉𝑙𝑒𝑎𝑑 may greatly change the merging distance. Speed differences 𝛥𝑉𝑙𝑒𝑎𝑑 and 𝛥𝑉𝑙𝑎𝑔 were 

more relevant than lead gap 𝐷𝑙𝑒𝑎𝑑 and lag gap 𝐷𝑙𝑎𝑔. The distance from the beginning of the 

merge (auxiliary) lane, 𝑆, turned out to be the least relevant feature.  

 

Table 4.1 Weight given by SVMs 

 

Variables Weights 

𝛥𝑉𝑙𝑒𝑎𝑑 0.7243 

𝛥𝑉𝑙𝑎𝑔 0.2449 

𝐷𝑙𝑒𝑎𝑑 0.0292 

𝐷𝑙𝑎𝑔 0.0012 

𝑆 0.0005 

 

A Bayes classifier was developed from 𝑘 = 3 and 
𝜆21

𝜆12
= 1. The model’s predictive 

accuracy in terms of validation data for merge and non-merge events is shown in table 4.2. The 

predictive accuracy for validation data was similar to the accuracy for training data (82% non-

merge and 90% merge), indicating that the model did not overfit the training data. The 

performance in terms of test data is also shown in table 4.2. The accuracy of merge events was 

high (92.3%), but it was only 79.3% for the critical non-merge events.   
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Table 4.2 Accuracy of Bayes classifier for validation and test data 

 

Decision 
Validation data Test data 

Observations Accuracy Observations Accuracy 

Non-merge 73 82.2% 459 79.5% 

Merge 56 91.1% 208 92.3% 

 

 

4.2. Decision Tree Model 

A decision tree with 62 terminal nodes was constructed using training data before 

pruning. After applying the pruning rules, a sequence of 16 minimal cost-complexity trees was 

generated. The total numbers of terminal nodes |𝑇�̃�| are shown in table 4.3.  

 

Table 4.3 Number of terminal nodes in minimal cost-complexity trees 

Tree |𝑻�̃�| 

𝑇1 62 

𝑇2 58 

𝑇3 53 

𝑇4 46 

𝑇5 29 

𝑇6 27 

𝑇7 22 

𝑇8 18 

𝑇9 12 

𝑇10 10 

𝑇11 9 

𝑇12 7 

𝑇13 5 

𝑇14 3 

𝑇15 2 

𝑇16 1 
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The relationship between total number of terminal nodes |𝑇�̃�| and estimated 

misclassification rate for both the training and testing data is presented in figure 4.1. As shown in 

figure 4.1, the estimated misclassification rate for training data 𝑅(𝑇𝑘) decreased sharply as the 

tree initially increased in size, then decreased slowly. The estimated misclassification rate for 

testing data 𝑅𝑡𝑠(𝑇𝑘) also initially decreased sharply, but after reaching its minimum value at 18 

terminal nodes, the rate began to climb as the tree size grew. Thus, the tree 𝑇8 with 18 terminal 

nodes was selected as the correct size decision tree model for predicting merge and non-merge 

events. 

 

 

Figure 4.1 Relationship between total number of terminal nodes and misclassification rate 

 

The tree structure is presented in figure 4.2, where terminal nodes are represented by 

shaded squares and decision nodes are represented by circles. The number of observations, class 

labels, and predictive accuracies for the terminal nodes are displayed beneath the terminal nodes. 

Node 1 was first split using the relative speed between the lead and merging vehicles, 𝛥𝑉𝑙𝑒𝑎𝑑. 
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This result further supports the finding from the Bayes classification model that 𝛥𝑉𝑙𝑒𝑎𝑑 was the 

most relevant driver feature in making merging decisions. The decision making process of the 

decision tree model is intuitive. For example, as shown by terminal node 𝑡8, a driver merged if 

the merging vehicle was slower (𝛥𝑉𝑙𝑒𝑎𝑑 ≥ 0 𝑚/𝑠) or slightly faster (0 > 𝛥𝑉𝑙𝑒𝑎𝑑 ≥ −2.7 𝑚/𝑠) 

than the lead vehicle and both the lead and lag gap were large (𝐷𝑙𝑎𝑔 ≥ 2.4 𝑚, 𝐷𝑙𝑒𝑎𝑑 ≥ 7.6 𝑚). In 

contrast, terminal node 𝑡7 can be interpreted in natural language in the following manner: if the 

merging vehicle was much faster (𝛥𝑉𝑙𝑒𝑎𝑑 < −2.7 𝑚/𝑠) than the lead vehicle and the lead gap 

was small (𝐷𝑙𝑒𝑎𝑑 < 8.9 𝑚), then the driver did not merge. For terminal node 𝑡14, if the merging 

vehicle speed was much greater (𝛥𝑉𝑙𝑒𝑎𝑑 ≥ −2.7 𝑚/𝑠) than the lead vehicle, if the lead gap was 

large (𝐷𝑙𝑒𝑎𝑑 ≥ 8.9 𝑚), the distance from the beginning of the merge lane was far (𝑆 ≥ 138.7 𝑚), 

and the even lag gap was not too large (𝐷𝑙𝑎𝑔 ≥ 0.76 𝑚), then the driver decided to merge, since 

driver merge behavior become more aggressive upon approaching the end of the merge lane. 

These rules generated by the decision tree are representative of everyday driving experiences. 

The predictive results of the decision tree are presented in table 4.4. Again, the predictive 

accuracy for the validation data was close to that of the training data (87% non-merge and 93% 

merge), indicating that the model did not overfit the training data. The performance of the test 

data is also shown in table 4.4. The accuracy for both merge and non-merge events was above 

80%. However, a higher accuracy for non-merge events is desirable for the lane changing 

assistance system.  
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Table 4.4 Accuracy of decision tree for validation and test data 

 

Decision 
Validation data Test data 

Observations Accuracy Observations Accuracy 

Non-merge 73 89.0% 459 84.3% 

Merge 56 85.7% 208 80.8% 
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Figure 4.2 Decision tree model structure 
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𝐷𝑙𝑎𝑔 ≥ 2.5𝑚 

𝐷𝑙𝑒𝑎𝑑 ≥ 7.3𝑚 𝐷𝑙𝑎𝑔 ≥ 12.2𝑚 

𝑆 ≥ 114.5𝑚 𝑆 ≥ 28.4𝑚 
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4.3. Combining Classifiers 

The Bayes classifier and decision tree models were combined using the majority voting 

rule. The resulting model was tested using the test data, and the results are shown in table 4.5. 

The accuracy for non-merge events improved to 94.3%, while the accuracy for merge events 

dropped slightly to 79.3%. As previously discussed, the accuracy of non-merge events is more 

critical than merge events for safety applications such as the lane change assistance system. 

Misclassifying a merge event as a non-merge event would result in a lost opportunity to merge, 

but would not have a negative safety impact. The misclassification parameter 
𝜆21

𝜆12
 can be adjusted 

to give greater weight to the predictive accuracy of non-merge events. To illustrate, the model 

performance for 
𝜆21

𝜆12
= 2 and 5 is shown in table 4.6. The predictive accuracy for non-merge 

events increased, while the accuracy for merge events decreased as the model became more 

conservative.  

 

Table 4.5 Accuracy of combined classifier for test data 

 

Decision Observations Accuracy 

Non-merge 459 94.3% 

Merge 208 79.3% 

 

 

 

 

 



26 

Table 4.6 Sensitivity of combined classifier to misclassification weights 

 

Decision Observations 

𝝀𝟐𝟏

𝝀𝟏𝟐
= 2 

𝝀𝟐𝟏

𝝀𝟏𝟐
= 5 

Accuracy Accuracy 

Non-merge 459 95.4% 96.7% 

Merge 208 73.6% 49.5% 

 

 

4.4. Performance of Other Models  

Two models from the literature, the genetic fuzzy model and the binary logit model, were 

also evaluated for comparison. They were estimated using the same dataset and the same set of 

variables. The coefficients of the binary logit model are presented in table 4.7. For the genetic 

fuzzy system, a total of 120 rules were generated from the training data. The performance of the 

two models relative to the test data is shown in table 4.8. Both models performed poorly in 

comparison to the classifier models developed in this study. The low accuracy for non-merge 

events is a concern relative to real-time lane changing assistance systems. However, it is noted 

that the estimated logit model was a binary logit model and was based on existing research. In 

the future, advanced discrete choice models could be developed to increase predictive accuracy. 
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Table 4.7 Coefficients of binary logit model 

 

Variable Coefficient p-value 

𝛥𝑉𝑙𝑒𝑎𝑑(m s⁄ ) 
0.163 <.0001 

𝛥𝑉𝑙𝑎𝑔(m s⁄ ) 
0.070 0.0043 

𝐷𝑙𝑒𝑎𝑑(m) 
0.061 <.0001 

𝐷𝑙𝑎𝑔 (m) 
0.003 0.4721 

𝑆(m) 
-0.004 <.0001 

Intercept 
1.967 <.0001 

* Not significant at 0.05 significance level 

 

 

 

Table 4.8 Predicted results for genetic fuzzy and binary logit models 

 

Decision Observed 

Accuracy 

Genetic Fuzzy Binary Logit 

Non-merge 459 73.6% 20.9% 

Merge 208 71.6% 95.7% 
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Chapter 5 Conclusions 

In this report, a lane changing assistance system for mandatory lane changes at lane drops 

was developed using the Bayes classifier and decision tree methods. The publicly available 

NGSIM vehicle trajectory dataset was used for model development and testing. The NGSIM 

dataset consisted of traffic conditions approaching congestion and congested conditions. The 

model employed factors such as vehicle speeds relative to lead and lag vehicles in the target lane, 

lead and lag gap distances, and the distance from the beginning of the merge lane. Previous 

research focused on the development of models for use in microscopic simulation, whereas the 

current study focused on the design of a lane changing assistance system. One main difference 

between simulation and lane change assistance system applications is a discrepancy in the 

relative importance of misclassification between merge and non-merge decisions. In a simulation 

model, the effect of a non-merge event misclassified as a merge event affects only the mobility 

measures. The same misclassification in a lane change assistance system, however, would affect 

safety and the likelihood of a traffic crash.   

The combined classifier that used both the Bayes classifier and decision tree models 

generated high predictive accuracy for critical non-merge events. The cost of misclassification 

was a surrogate for driver conservativeness. The greater the cost, the more conservative or less 

aggressive a driver was in pursuing the gap to change lanes. By assigning values of 1, 2, and 5 to 

the cost of misclassification, the classifier produced accuracies of 94.3%, 95.4% and 96.7% for 

non-merge events, and 79.3%, 73.6% and 49.5% for merge events. As the cost of 

misclassification increased, the accuracy for non-merge events also increased, but the accuracy 

for merge events decreased. Although this report illustrated the performance of two additional 

models from the literature, the genetic fuzzy system and binary logit, these models, as proposed 
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in the literature, were targeted at microscopic simulation.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

References 

1. Herman, R. and G. H. Weiss. 1961. “Comments on the highway crossing problem.” 

 Operation Research 9, 828-840. 

 

2. Drew, D. R., L. R. LaMotte, J. H. Buhr, and J. A. Wattleworth. 1967. “Gap acceptance in 

 the freeway merging process.” Texas Transportation Institute, 430-2. 

 

3. Miller, A. J. 1972. “Nine estimators of gap acceptance parameters.” In proceedings of the 

 5th International Symposium on the Theory of Traffic Flow and Transportation, 

 215-235. 

 

4. Daganzo, C. F. 1981. “Estimation of gap acceptance parameters within and across the 

 population from direct roadside observation.” Transportation Research Part B, 

 15B, 1-15. 

 

5. Gipps, P. G. 1986. “A model for the structure of lane changing decisions.” 

 Transportation Research 20B(5), 403-414. 

 

6. Kita, H. 1993. “Effect of merging lane length on the merging behavior at expressway on-

 ramps.” Transportation and Traffic Theory, 37-51. 

 

7. Yang, Q. and H. N. Koutsopoulos. 1996. “A microscopic traffic simulator for evaluation 

 of dynamic traffic management systems.” Transportation Research Part C4, 113-

 129. 

 

8. Ahmed, K. I., M. E. Ben-Akiva, H. N. Koutsopoulos, and R. G. Mishalani. 1996. 

 “Models of freeway lane changing and gap acceptance behavior.” Transportation 

 and Traffic Theory, 501-515. 

 

9. Kita, H. 1999. “A merging-giveway interaction model of cars in a merging section: a 

 game theoretic analysis.” Transportation Research Part 33 A, 305-312.  

 

10. Hidas, P. 2005. “Modeling vehicle interactions in microscopic simulation of merging and 

 weaving.” Transportation Research Part C 13, 37-62. 

 

11. Toledo, T., H. N. Koutsopoulos, and M. Ben-Akiva. 2007. “Integrated driving behavior 

 modeling.” Transportation Research Part C 15, 96-112. 

 

12. Meng, Q. and J. Weng. 2012. “A classification and regression tree approach for 

 predicting drivers’ merging behavior in short-term work zone merging areas.” 

 Journal of Transportation Engineering, ASCE, ISSN 0733-947X. 

 

13. Hou, Y., P. Edara, and C. Sun. 2012. “A Genetic Fuzzy System for Modeling Mandatory 

 Lane Changing.” In Proceedings of the 15th International IEEE Conference on 

 Intelligent Transportation Systems. 

http://catalog.loc.gov/cgi-bin/Pwebrecon.cgi?DB=local&PAGE=First&Search_Arg=0733-947X&Search_Code=STNO


31 

14. Federal Highway Administration. 2011. Next Generation Simulation Fact Sheet. 

 ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. 

 

15. Choudhury, C., V. Ramanujam, and M. Ben-Akiva. 2009. “Modeling acceleration 

 decisions for freeway merges.” Transportation Research Record, 2124, 45-57. 

 

16. Yeo, H., A. Skabardonis, J. Halkias, J. Colyar, and V. Alexiadis. 2008. “Oversaturated 

 freeway flow algorithm for use in next generation simulation.” Transportation 

 Research Record, 2088, 68-79. 

 

17. Cambridge Systematics, Inc. 2005. “NGSIM U.S. 101 Data Analysis Summery Report.” 

 Washington, D.C., Federal Highway Administration. 

 

18. Punzo, V., M. T. Borzacchiello, and B. Ciuffo. 2009. “Estimation of vehicle trajectories 

 from observed discrete positions and next-generation simulation program 

 (NGSIM) data.” Proceedings of the 88th Annual Meeting of the Transportation 

 Research Board. 

 

19. Kesting, A. and M. Treiber. 2008. “Calibrating car-following models using trajectory 

 data: a methodological study.” Proceedings of the 87th Annual Meeting of the 

 Transportation Research Board. 

 

20. Duret, A., C. Buisson, and N. Chiabaut. 2008. “Estimating individual speed-spacing 

 relationship and assessing the Newell’s car-following model ability to reproduce 

 trajectories.” Proceedings of the 87th Annual Meeting of the Transportation 

 Research Board. 

 

21. Ossen, S. and S. P. Hoogendoorn. 2008. “Validity of trajectory-based calibration 

 approach of car-following models in the presence of measurement errors.” 

 Proceedings of the 87th Annual Meeting of the Transportation Research Board. 

 

22. Punzo, V., D. J. Formisano, and V. Torrieri. 2005. “Nonstationary kalman filter for 

 estimation of accurate and consistent car-following data.” Transportation 

 Research Record, 1934, 3-12.  

 

23. Ma, X. and I. Andreasson. 2007. “Statistical analysis of driver behavior data in different 

 regimes of the car-following stage.” Transportation Research Record, 2018, 87-

 96. 

 

24. Hastie, T., R. Tibshirani, and J. Friedman. 2001. “The Elements of Statistical Learning. 

 2nd edition.” Springer.  

 

25. Martin, T., P. Harten, P., D. Young, E. Muratov, A. Golbraikh, H. Zhu, and A. Tropsha. 

 2012. “Does rational selection of training and test sets improve the outcome of 

 QSAR modeling?” Journal of Chemical Information and Modeling, 52(10), 2570-

 2578.  



32 

26. Edara, P., D. Teodorovic, and H. Baik. 2007. “Using Neural Networks to Model Intercity 

 Mode Choice.” Intelligent Engineering Systems through Artificial Neural 

 Networks, 17, 143-148. New York: ASME Press.  

 

27. Theodoridis, S. and K. Koutroumbas. 2006. Pattern Recognition. 3rd ed. Academic 

 Press. 

 

28. Buturovic, L. J. 1993. “Improving k-nearest neighbor density and error estimates.” 

 Pattern Recognition, 26(4), 611-616.  

 

29. Maunder, C. R. F. 1997. Algebraic Topology. New York: Dover. 

 

30. Domeniconi, C., D. Gunopoulos, and J. Peng. 2005. “Large margin nearest neighbor 

 classifiers.” IEEE Transactions on Neural Networks, 16(4), 899-909.  

 

31. Russel, S. and P. Norvig. 2003. Artificial Intelligence A Modern Approach. 2nd edition. 

 New Jersey: Prentice Hall, 653-663. 

 

32. Shannon, C. and W. Weaver. 1949. The Mathematical Theory of Communication. 

 Urbana, IL: University of Illinois Press. 

 

33. Breiman, L., J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression 

 Tree. Belmont, CA: Wadsworth International, 66-75. 

 

http://www.amazon.com/exec/obidos/ASIN/0486691314/ref=nosim/weisstein-20

	Project Cover_Edara184
	Analysis of Driver Merging Draft Report_UMC FINAL

